Lambert’s Algorithm for a = {/¢, ¢ > 0.
(J. H. Lambert, Beitrige zum Gebrauche der Mathematik und deren An-
wendungen, Zweyter Theil, Erster Abschnitt, 1770, p. 152.)

Start with > 0. Iterate

(n+ e+ (n—1)a™
x(n — e+ (n+1)an

x—g(x):=

Therefore all iterates are positive. More precisely,
Ty = g(xg), k=0,1,2,...,

with zg = a, initial guess. In practice, on a binary machine (most are), we
can scale so that 1 < 2¢ < 2" Then zy = 1 is a pretty good initial guess.
Rearrange a bit:

B (n+Lc+ (n—1a"
glw) = = x((n—l)c+(n+1)x" 1)

c—z"

- 2:1:(n — e+ (n+1)an

Thus
0 < 29 < a = g < 2,

g > a4 = Iy > I1

But we’ll show a lot more.
Again,
c—z"

(n—1)c+ (n+ 1)z

glx)—a=x—a+2zx

To greatly simplify matters we make the change of variables: z = E, r=az.
a
Then r =a < 2 =1 and
g(az) 2" —1

=2 1-2 .
a : Z(n—l)—i—(n—I—l)z”

But
=1=(z-1)14z+2"4+-+2""

g(az) o P R R A A
-1 = (z 1)(1 2 TSI)

(n—1)—22—222 — -+ — 22" — 22" 4 (n+1)2"

= -1 CE N ESE

(n—1)—22—222— - =221 4 (pn—1)2"
n—1)+ (n+1)z"

= (z—1)

We have
po(l)=mn—-1)=2n—-1)+(n—-1)=0

so z — 1 divides pg(z). Let

z
p(z) = ZOE i =agFa1z+ - +a,_12" L

Then
(=1+2)/p1(2) = (=1+2)(ap+arz+--++a,_12"")
= —ap— a1z — a2t — - —a, 12"}
tagz + a122 + -+ ap_02" N+ ap_12"
= —ap+(ag—a)z+ (a1 —ax)2> + -+ (ap2 — p_1)2" 1+ ap_12"
= (n—1)—22—222 — - = 22" 4 (n — 1)2" = po(2).

Now, two polynomials are equal if and only if their coefficients are equal.

Check this out. Hence

— ay = n — 1 Qo = —n-++ 1
ag — a1 = -2 aq = q+2=-—-n+3
a; — Qo = =2 Qs = a1 +2=-—-n+5H>
Ap—1 — Qi = -2 = a = —m+2k+1
Upo — Up1 = —2 py = n—1
A1 = n—1
So
n—1
m(z) = Z agz"
k=1
n—1
= Y (=(n—1)+2k)2"
k=0
n—1 n—1
= —(n—-1)Y F+2) k2
k=0 k=1
and

m(l) = —(n—l)Sl—i—QSk

-1
- —(n- 1)n+2% _o,
showing that z — 1 divides p;(z). Let
p(z) = flfzi =: bO +biz+---+ bn_2zn—2‘

Then
(—]_ + Z)(bo + blz + b222 s+ bn_22n72)

= —bo — blz — bQZ2 — e — bn,gz”_?’ — bn,QZn_2
+boz + 122 by g2 by 32V 4 by g2

= p1(2).

Hence

bkfl—bk:&k, k:O,l,...,n—l,

in which

So

b_l = bn—l = 0.

bk:bk_l—ak,]{3:0,1,...,”—2,

and, as a check, we should have

Sum to get
bo
b
ba
b,
In particular
bn—2
Summary:
Po(2)
with

bn_g = Qp—1 =N — 1.

—ap since b_; =0

bo—alz—ao—al

bl—agz—ao—al—ag
k

— =04

— Sk (—n+2j+1)
Yioo(n —1—2j)
(n—1)Xh g1 —-2%Fj
(n—1)(k+1) — 25E

mn—1)(k+1)—k(k+1)
(n—k—1)(k+1).

m—n+2-1)(n—2+1)
n — 1.

and all coefficients are positive. In particular,

n—1 n—1
p1) = n) k=3 K
k=1

k=1

(n—1)n (”_1)(”_%)”

- T 3

= —(n—l)n(n+1):n(n6_ D
also

g1)=mn—-1)+(n+1) =2n,

p(1) n*—1
A _ >0 forn>1.
q(1) 12 T

Transforming back to z we get

that is
n —a)d P
:1:k+1—a+(k&2) <;k)
a(%)
———
>0
SO
Tp > a4 = Ty > G
and

T < a4 = T <a.

All together

0< ro<a=rp<m<---<uxz, o

To>a = xg>xr <0 >x, \, T

And, by passing to the limit in the iteration equation, because g(z) is con-
tinuous for x > 0,

L(n+1Dec+ (n—1)(z*)"
(n—1)c+ (n+ 1)(z*)™

zt=g(a") =z
But x* > 0 so it can be cancelled to get

(n—=De+ (n+1)@)" = (n+ e+ (n—1)(z%)",

that is
2(z")" =2c
or

()" =c.

Since z* > 0, ¢ > 0, z* must be the unique positive n'
{/c. Convergence is cubic since

h *

rootof c: z* =a=

Tp+1 — @ 1p1) n*-1 b o
—— 5 —-—"=—— ask— 4oo.
(x, —a)® a?q(1) 12a2 ’

Lambert’s algorithm is Newton’s method for

nt1 C
2

f(.]?) =z n—1

T

This was confusing at first, for n = 2. We're trying to compute /c but f
involves square roots! Never worry, we have

" —c
f(x>: n—1
xr 2
n+l1l ».1 n-—1 c
f’(x) _ > T2 +—2 —
T2

IL(n+1a™+ (n—1)c

2 n+1

T2
f/(.flf) _ 1 (n+1)z™+(n—1)c anT_l
fy — 2w

1(n—1c+ (n+1)z"

2 x(z" — ¢) ’

a rational function! In trying to find all functions so the last equation holds
we observe that

d
= dr In f(x)
(when f(z) > 0). Hence

(n—1)c+ (n+1)z"

d
T2 z(z™ —¢) v

In f(x

and we are naturally led to the integral

Ee=

That seemed tedious, but not uninteresting, to do via partial fractions. But
in fact, by the above stuff, it’s

dz 1
[=
z(zn—=1) n

as can be seen by differentiating both sides (consider cases 2" > 1 and 2" <

1).

Lambert’s algorithm is Halley’s algorithm of 1694 applied to f(z) = z"—c.

1
1— —
ZTZ

+ k,

